Example 14: Student work

AN

Splerical geumcisy

Although Euclidean geometry has been the most accepted and the most widely used type of
geometry for centuries, mathematicians and geometers have discovered other types of geometry
that can be just as useful. These geometries are referred to as non Euclidean geometries. There
are two types of non Euclidean geometries: Spherical and hyperbolic geometry. In this
exploration. I shall focus on spherical geometry. This is the geometry on the surface of spheres
discovered by Kiemann 1n 13>4. 1n1s geometry agrees with four of Euclidean geometry
postulates except the parallel lines postulate. In Riemannian geometry, there are no parallel lines
(All lines meet in spherical geometry). In this type of geometry, it is impossible to draw straight
lines because as soon as you start drawing a straight line, it curves according to the curvature of
the surface of the sphere.

In spherical geometry, all straight lines form great circles. This can be illustrated if you attempt
to draw a straight line on the surface of a football. Eventually, the marker will end up where you
started. You have, in effect, drawn a great circle. A great circle is a circle whose center is the
center of the sphere. It therefore has the same radius and diameter as the sphere. In the example
that I gave, the diameter of the circle formed is the same as the diameter of the football. Any two
great circles must intersect at two points on the surface of the sphere

Diangles -

The intersection of two great circles gives rise to two congruent antipodal diangles. A diangle is
a planar figure formed on the surface of the sphere by the intersection of two great circles. It is
called a ‘di’angle as it only has two angles enclosed in it.

Antipodal means on opposite sides of the sphere

Figure 1
The two great circles enclosing the diangle make an angle o. with each other. The area of the
diangle is therefore given by A=201".
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Proof
Case 1: Hemisphere
A hemisphere is a diangle whose great circles make an angle a=n with each other.

——
e,

Consider a hemisphere with radius ‘r’

2 1
A=4—n21-/;']=21rr2=2ar2 QED

Case 2

Given a diangle with an angle o less than =, its area will be % of the area of the hemisphere i.e.

-Ex 2nr? = 2ar? QED
Therefore the area of a diangle on a sphere with radius ‘r’ is 2ar*

Spherical triangles

The intersection of three great circles on the surface of the sphere can form two congruent
antipodal triangles. These triangles are referred to as spherical triangles. A spherical triangle is a
polygon formed on the surface of a sphere whose sides are great circles. A good example is
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‘ Triangle ABC is a spherical triangle as it has been formed on the surface of the sphere by the
intersection of three great circles. I have used this triangle as a simple example to illustrate
Girard’s theorem (shown and proved later). However, this triangle is special as it makes 0.125
exactly of the surface of the sphere. All its interior angles are also right angles. A of this triangle
is therefore 0.125(4mr)=0.57r.

Another triangle XYZ can be considered.

This is another special triangle that is 0.0625 of the whole surface of the sphere. Its area is
therefore A=0.0625 (4mr*)=0.25mr

Girard’s theorem
A general formula for finding the area of any given spherical triangle is A=r? (a+B+yim) where o,
B, and vy are the interior a.ngles of the triangle and r is the radius of the sphere
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Figure 4 . - all dhang les
Area of the sphere=47r”
=4a. I*+4P r’+dy r'-4A
where A is the area of one triangle.
Equating
dmr’=40, I’ +4P r’+4y 1*-4A
Therefore A= r* (a++y-m) QED
Applying this formula to triangle ABC (figure 2) gives A= (0.57+0.5 ©+0.5 n- m)=0.5 7 r*
A of triangle XYZ (figure 3)=r* (0.57+0.5 +0.25 m- 1)=0.25 1 1*
This formula therefore is valid as gives the correct answer.

To verify this formula for more compiex triangles, I constructed triangles on Geometer Sketch
Pad (GSP) and measured their area (using grids). The result can then be compared by the result
obtained when 7 is subtracted from the sum of their interior angles (Girard’s theorem).

Since spherical triangles are created from the intersection of three great circles, I drew them on
GSP by intersecting three circles of the same radii. I considered these to be my great circles. I
measured the angles included in the triangles by drawing tangents at the triangle’s vertices and
measuring the angle formed by these tangents
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Figure 5

Each square grid is has an area of 1cm”. However, when pasting this image onto this document,
it had to be shrunk so that it could fit in this page.

These circles are of a radius of 8cm.
Using Girard’s theorem,
A = (8¢cm)?(0.665 + 0.664 + 0.676 — 1)mr=202.067cm’

However, this triangle on GSP only occupies about 36cm’ because it occupies about 36 square
grids in total.

I tried the same concept with a different triangle to try verify the theorem. I used circles of radi
4.5cm.

AN
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Radius ©QAB=4501cm
Radius ©OBC=4.502cm
Radius OQDE=4.506 cm
myFAG =0.670; radians
myIBH = 06665 radians
mzKDJ=06575 radians

Figure 6

Each square grid is has an area of 1cm”. However, when pasting this image onto this document,
it had to be shrunk so that it could fit in this page.

These circles are of a radius of 4.5cm.
Using Girard’s theorem,
A = (4.5cm)?(0.670 + 0.666 + 0.657 — 1)7z=63.172<:m2

However, this triangle on GSP only occupies about 11cm? because it occupies about 11 square
grids on total.

This method of verification is therefore not valid due to the fact that it relies on the
representation of spherical triangles on 2 dimensions. Spherical triangles are typically 3
dimensional figures as they are formed on the surface of the sphere. An attempt to represent
them on 2D space (this page) was not successful as it lost information about the triangles.
Nonetheless this proves that this is not a valid method of representing spherical triangles on 2D

Due to the fact the previous verification method failed, I shall now try another verification
method to verify Girard’s theorem for simple and complex triangles.
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In this method, I shall use a real sphere (ball) on which I will draw a triangle. I will then draw a 1
cm grid on this triangle and count the grid squares it takes up. This will empirically give me the
area of this triangle. I will then compare this value to one that I get by using Girard’s theorem.

I first started with a simple triangle similar to triangle ABC (figure 2).

Figure 7
This triangle’s interior angles are right angles only.

I counted the grids that I drew inside this triangle and found that it had included 188 grids. Since
each square grid is 1cm? big, this triangle therefore has an area of 188+2cm?. This value is not
exact as I have left room for errors in my measurements due to the fact that the grids were drawn
manually using a flexible ruler that could not curve as much as the sphere curved.

Using Girard’s theorem, its area=r> (0.57+0.5 ©+0.5 ©- ) =0.5 r* where ‘1’ is the radius of the
ball. Due to the fact that I didn’t have any other equipment apart from a flexible 30cm ruler,
markers and a ball, I had to calculate the diameter hence radius of the ball instead of measuring it
directly. I did this by measuring a quarter of the ball’s circumference (my triangle’s base). I
found it to be 17.340.2cm. This error is due to the fact that the surface is curved and although my
ruler is flexible, I could not get the exact measurement of the length. I then calculated the radius
from that i.e.

T
17.3cm = vz-r ~r=11.014cm
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[ propagated errors by calculating the relative error in the quarter circumference measurement
and multiplying it by the result in the radius i.e.

0.2cm

17 30m X 11.014cm = 0.127cm

The value of ‘r* with errors propagated into it is 11.014+0.127cm
Substituting this value for ‘r’ in the result I got from Girard’s theorem gives
A = 0.5m(11.014cm)? = 190.550cm?

I also propagated errors into this value of area by multiplying twice the relative error in radius by
the value of area that I obtain. I am using twice the relative error in radius as it is multiplied by
itself in the area equation hence introducing the same error twice

0.127¢cm

Rt - i 2 2
T T X 190.550cm 4.394cm

The value of area of this triangle with errors propagated into it is therefore 190.550::4.394cm’

The value 188 cm” that I obtained from empirically measuring the area of the triangle (using
grids) is within the error band of the value I obtained from Girard’s theorem
(190.550::4.394cm?). This theorem is therefore valid as it gives the same result as the empirical
measurement that I did. )

After proving the validity of the theorem on a simple triangle (one that only has right angles, and
makes up an eighth of the surface of the sphere), I shall now move on and attempt to prove
Girard’s theorem on a complex triangle. On this triangle, I manually measured the included
angles rather accurately. I then drew grids on the triangle and counted how many there were to
get the area of the triangle.

N
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Figure 8

I counted the grids that I drew inside this triangle and found that it had included 144 grids. Since
each square grid is 1cm? big, this triangle therefore has an area of 147+2cm?. This value is not
exact as I have left room for errors in my measurements due to the fact that the grids were drawn
manually using a flexible ruler that could not curve as much as the sphere curved.

I measured the angles and found out that they are 65°, 132° and 53°. In radians these are 0.344,
0.7337 and 0.294x respectively.

Using Girard’s theorem, its area=r” (0.344m+0.733 7+0.294 n- ) =0.371 7 r* where ‘1’ 1s the
radius of the ball. I then used the value of ‘r’ that I had obtained from the previous calculation
since [ used the same ball for this experiment.

Substituting this value for ‘r’ in the result I got from Girard’s theorem gives
A =0.3717(11.014cm)? = 141.388cm?

I also propagated errors into this value of area by multiplying twice the relative error in radius by
the value of area that I obtain. I am using twice the relative error in radius as it is multiplied by
itself in the area equation hence introducing the same error twice

0.127cm

Rk it R 2 2
Z T1.014cm X 141.388cm 3.361cm

The value of area of this triangle with errors propagated into it is therefore 141.388+3.361cm”.

The value 144 cm” that I obtained from empirically measuring the area of the triangle (using
grids) is within the error band of the value I obtained from Girard’s theorem
(141.388+3.361cm?).
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I have therefore successfully proven the validity of this theorem as it has given me the expected
result in a real practical situation.

Applications of spherical geometry

Due to the fact that the Earth is almost a sphere (it is in fact oblate spheroid), spherical geometry
is always used in navigation. Pilots and sailors use it all the time to find the shortest distance
between their current positions and their destinations. On the Earth’s surface, Euclidean
geometry would not work as the Earth is curved and joining two points on it with a straight line
would, in effect, mean a route through the Earth i.e. under the surface of the Earth (which is not
feasible for pilots or sailors).

Spherical geometry is also very useful in architecture as buildings employing spherical geometry
tend to be very attractive.

Figure 9
Furthermore, it is useful in some areas in chemistry such as nanotechnology. A good example is
buckminsterfullerines which are spherical molecules. These are made of pentagons and hexagons
making up a sphere. Since chemists are usually interested in finding the angle between the bonds
in these bucky balls, spherical geometry might come in handy as these polygons are on a sphere
therefore Riemannian geometry rules apply.
A more modern application of spherical geometry is computational origami. This is a type of
computer-assisted design (CAD) program used to model the ways in which various materials,
including paper, can be folded (Rouse). This has various applications in the engineering and
information technology fields and could not have been easily untangled without spherical
geometry. As this technology progresses, scientists will be able to manufacture items such as
foldable telescopes and satellite wings (It's a small web).
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Figure 10

Reflection

I think the discovery of spherical geometry is very important as it eased navigation. I think this is
very good as it made access to many parts of the world easier. This facilitates globalisation and
hence development as more people have greater access to place more easily. It also enables
emergencies (e.g. fire outbreaks, casualties) to be taken care of faster as transport is made faster
and easier.

In addition to that, I think it is important as it has facilitated research (and maybe even
breakthrough in the future!) in the frontiers of science. Concepts like computational origami
would be impenetrable without the knowledge of spherical geometry. Consequently, research in
these areas is promising as scientists consider the possibility of evolving information technology
through storing more data in a smaller space. This would greatly influence the world and bring
about even further development!

Nonetheless I believe that the discovery of spherical geometry in 1854 by Riemann is proof that
our world is developing and not only remaining stagnant. This meant that there are people who
are willing to research and delve into an idea deep enough to come out with a completely new
phenomenon. This is very encouraging for mankind as we know that we have not lost hope; we
will still trudge forward. It is encouraging as many more people will be ready to take risks and
discover new items despite the controversy.

It also facilitates nanotechnology: bucky balls. If scientists can discover a way to delocallise
electrons on the surface of the carbon sphere, it will be a great breakthrough in science brought
about by spherical geometry.

Spherical geometry improves the beauty of our surroundings through the construction of
aesthetically beautiful buildings. This brings about happiness and a less stressed society as
people are surrounded by beauty.
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