P Mathematics

open different perspectives and, we hope, invite exploration. This
book, in a few pages, can only gesture toward the territory and
hand you {metaphorically) a map. It is up to you, if you will, to do
(metaphorically) the exploring.

Have the lights brightened? Have the shadows melted away? Far
away, as perfect circles spin in crystal spheres, celestial music sounds
in perfect harmony. On a screen the shifting shapes of symmetries
and sequences, intricate filigrees, white out softly and vanish into
pure abstraction. We have entered the realm of mathematics where

the rational mind is at work, at play.

These images may not be what come first to your mind as you do
your math assignments. Is there any other picture or tmage that
conveys your experience in this area of knowledge?

When most abstracted from the world, mathematics stands apart from
other areas of knowledge, concerned only with its own-internal
workings. It retreats, it seems, to the most remote of the ivory towers,
in order to think in peace, undistracted by the world.

But for all its removal into abstraction, mathematics, at other times,
also gets around companionably in the world. It has developed
intimate relationships with other areas of knowledge, helping them to
think, express ideas, draw new connections, model the real world,
and create new knowledge. It becomes almost part of the family in
the natural sciences and the human sciences and is welcomed in
professions as various as engineering, veterinary medicine, marketing,

and architecture.

You have probably welcomed it yourself into your own family home.
From managing a budget to managing your time; from filing income
taxes to deciding how much to trust an experimental medical
treatment; from calculating the amount of carpet you’ll need to
purchase for your living room to estimating the ingredients for a
shopping list, you may already have found reason to appreciate
mathematics. Even if you go into a field that relies minimally on
mathematics, being an educated adult in modern society will ensure
that mathematics will permeate many aspects of your personal life.

Mathematics gives a splendid entry point into our TOK areas of
knowledge.

Is mathematics "the language of the universe”?

Generally speaking, mathematics is the study of patterns and
relationships between numbers and shapes. Symbolic and abstract, it
takes us into our minds and back out to the world.

No matter what one believes about the origin of mathematics—some
philosophers of math continue to engage in the age-old argument
about whether we invent mathematics or discover it as we do
scientilic laws—it is undeniable that mathematical equations can
describe the physical universe extremely well. We can truly feel a
sensce of wonder that the area of knowledge which takes us closest to
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Choose three words that for you
best describe the essence of 5
mathematical knowledge. Share

~ thern with classmates. Do you

- find that within your group

- words and ideas recur? Do you
* think that the group impression

of mathematics is a sound
general picture—or a stereotype?
How would you go about

finding out?
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abstract thought simultaneously provides us, very often, with the
symbolic system with which we can talk most precisely about the
world,
Two very special irrational numbers illustrate this amazing )

connection between the abstract and the concrete. Pi (w =
3.14159...) and Euler’s constant (€ =2.71828...) show up in many

equations in the natural and human sciences, and within
mathematics itself.

Pi appears when we consider the circular shape, and is defined as
‘he ratio of a circle’s circumference to its diameter. It naturally

ppears whenever knowledge about circles and spheres is invoked,
:ven within physics formulae.

Che formula e = 1/01 + 1/11 + 1/21 + 1730+ 1/41 + ... (infinite series)
rovides one way to calculate Euler's constant, and uses factorials
€8, 5I=5x4x3x2x1:01=1 by definition). As students of
alculus learn, the function e~ has very peculiar properties. It is even
nore peculiar that a number calculated with an infinite series would
\aturally appear in equations describing phenomena as diverse as
adioactive decay, the spread of epidemics, compound interest, and
opulation growth. Finally, within mathematics itself many consider
uler’s equation, e + 1 = 0, to be one of the greatest equations of

Il time. Not only does it uncannily connect the five most important
umbers of mathematics (e, m 1, 0 and the imaginary number i),

ut “what could be more mystical than an imaginary number
eracting with real numbers to produce nothing?”!

/e do not know why natural phenomena are so well described by |
tathematics, which is sometimes called “the language of the
niverse”. Novels like Contact by Carl Sagan (in the book this is

ade more explicit than in the namesake movie) presume that any ;
telligent extraterrestrials we encounter will be able to understand :
ir mathematics. This belief was also shared by the very real

fentists who included in the cargo of the Voyager 1 and 2

acecraft (launched in 1977 and now moving beyond the solar

stemn) phonograph disks which require that our mathematics be
«ciphered.?

ire and applied mathematics

1€ main difference between pure and applied mathematics, as

me universities classify their departments, is in the application of
¢ knowledge they develop. (The qualifier “pure” to describe one
1d doesn’t imply that the other kind is impure or inferior;

“ording to one practitioner.? a more fitting name might be
leoretical mathematics”.) Researchers in pure mathematics—

lich includes abstract fields such as algebra, analysis, geometry,
mber theory, and topology—are not concerned with the direct
\ctical applications of their labour. Applied mathematicians, on the
1er hand, focus on developing mathematical tools to enable and 3
nance research in other areas of knowledge. Applied math fields

lude numerical analysis, scientific computing, mathematical

ysics, information theory, control theory, actuarial science, and .
ny others.

]
(5]
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As is usual with classification schemes, some of the distinctions
between “pure” and “applied” are fuzzy. The very establishment of
applied mathematics resulted from the successful application of pure
mathematics to real-world problems. As Nikolai Lobachevsky once
said, “There is no branch of mathematics, however abstract, which
may not someday be applied to the phenomena of the real world.”
In the 1970s his assertion was verified yet again with the application
of the fundamental theorem of arithmetic—considered useless for
more than 2,000 yearsl—to cryptography, in order to enable secure
electronic communications.’

A second degree of fuzziness occurs when we consider the
distinction between applied mathematics and the areas of knowledge
they support. For example, many advances in physics—perhaps even
most advances-—did not result from fitting a mathematical
expression to experimental data points. To derive the equation

E = mc, for example, Albert Einstein applied Lorenz transformations
to what he believed was true about light and logically deduced, one
step following the other, his theory of special relativity. Thus, it is
sometimes difficult to distinguish clearly between applied
mathematics and theoretical physics. With thé pervasiveness of
computational techniques applied to modelling and simulation in
various fields, today the boundaries have become even more
blurred.

Whether we're speaking of pure or applied mathematics, both deal
solely with ideas, at a level of extreme abstraction. The number 2
symbolizes not just two objects of any sort but the idea of two-ness,
and the place of two-ness in a number line of other abstractions
going to infinity and back to negative infinity—an idea even more
abstract. In set theory there can be an infinite number of infinities,
and mathematicians can manipulate them through the symbols and
the rules they've established to govern their use.

A mathematical world?

The world abounds with patterns that can be described in
mathematical terms. How would you describe the examples pictured
here?

top: face, the phases of the moon, the pattern of a flock of birds
in flight

left column: starfish, buttercup, snowflake, sea anemone,
sunflower

middle column: butterfly, pansy, crab, drainage pattern (or...?),
leaf, feet

right column: snail, cochlea of the inner ear, water going down a
drain, hurricane viewed from above, galaxy, iris of the eye.

To what extent is the naming system in biology affected by
characteristics of living things describable in mathematical terms?

In these examples, what kinds of patterns appear within all three
categories of animals, plants, and non-living things?

What other mathematically describable patterns in nature can you
add to these examples? What, for example, is the Fibonacci series?
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The sketch on p. 136 starts and ends with parts of the human body,
mathematically describable in. number and symmetry. Do we
interpret the world as mathemarical because we ourselves can be
described so, and hence are inclined to see the world in our own
terms? Or are patterns describable in mathematical terms part of the
world independent of our own minds—a mathematical world of
which we are only a part? Bven without €xpecting to answer it, you
may find the question quite Intriguing, as have others before you.
Mathematics as a language
You have learned many mathematical symbols in your lifetime—all
the numbers you can Imagine, and many others. Take a few
maoments to write down ten mathematical symbols (other than real
numbers, which would be too easy). Note how each symbol has a
Very precise meaning.

Are you allowed to combine these symbols in any way you wish?
No. In the same way that the string “there go pretty me went 17
uses English symbols but is not grammatical, a string such as

“x +2 ){ =>"is not grammatical. It is meaningless,

Because it is symbolic and can be manipulated into meaningful
statements, mathematics has many characteristics of language.
Although it does not have the range of functions of language and,
arguably, depends on being consciously taught through language,
mathematics has features which make it far superior to language as
a symbolic system for abstract, rational argument:

1 Itis precise and explicit. 3 is always 3, whereas “a few” can '
mean two, three...or even many, as in “I just need a few ‘
minutes!”

2 Itis compact. Considerable thought can fit into a few lines, To
see the difference for yourself, explain the Pythagorean theorem,
& =a®+ b? using English.

Now, write down a few of the rules with which you manipulate
mathematical symbols and statements. Examples include the
cominutative property, cross-multiplication, not dividing by zero,
reducing a fraction, factorizing a polynomial, and many others. Note
that these rules are general. The introduction of rules leads us to two
more features of mathematics as a symbolic systern:

3 Itis completely abstract, It manipulates its statements solely with
its own rules.

4 In a way similar to a valid deductive argurnent, mathematical
Statements can be manipulated in a step-by-step fashion
according to clearly defined rules, leading to new conclusions
that were not readily apparent.

Note that when these abstractions are applied to the world, the

neaning of mathematical statements gains a concrete dimension.

can abstractly know that the equation = 42 + j? is applicable to

‘Very right triangle, but when I'm buying fencing for my garden,

letermining the shortest drive between two points, or calculating

he resultant force in a physics problem, a, b and ¢ have different -
nd very specific meanings.
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For mathematicians, this precise, compact, abstract, and transformable
symbolic system provides the vocabulary and grammar which enable us to
talk about abstract relationships such as symmetry, proportion, sequence,
frequency, and iteration. Thus, mathemartics simultaneously provides a
way of analysing not just patterns found in the world by the sciences but
also those created from the world by the arts.

3 ry to write a poem in mathematical language, jus;
for the fun of it. Students before you have done ¢ !
with results that are quite entertaining. Concepts of |
nothingness, difference, union of sets, and infinity,

1 If you are interested in visualizing mathematical
ideas, investigate the artworks of M.C. Escher,
which tease and puzzle sense perception while
they play with mathematical concepts, You may

wish 1o pair up with someone else in the class or
form a small group to look closely at his art and its
relationship with mathematics, and share what you
have found with the rest of the class. Images and

for example, seem to lend themselves to poetry—
but they are merely the start. When you have :
exhausted your capacity to unite mathematics with
your poetic imagination, consider whether what

you have written could be considered mathematics
or, rather differently, language using mathematical
imagery. Think back also to the COMparisons you
drew between different symbolic systems in
Chapter 2 (see page 33).

mathematical commentary can be found on the
Internet.

2 If you are a musician familiar with compositional
analysis, share with the rest of your class some
mathematical principles in music, You may wish to
pair up with someone else in the class or form a
small group to present your ideas. Live
performance or recorded music add pleasure to
exploration of this topic.

With such a wide range of applications in the world,
what is it that mathematics cannot do as 3
“language"? Why is the IB never likely to offer
mathematics A as a group 1 subject?
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Mathematics is frequently spoken of as having foundations, rather
like a building with a strong stone or concrete base. If the
foundations are solid and unshakeable, the construction that is built
OIL top rests secure. For mathematics, assumptions known as axioms
provide the foundation, and through the process of deductive
reasoning, step by step, often over a span of many centuries,
mathernaticians carefully erect a building.

Different mathematical fields such as geometry, algebra, set theory
and number theory are axiomatic, deductive systems. Each of these
fields is based on a different set of axioms, but relies on the same
method to develop new knowledge. By using the axioms at the
l[oundation as premises and applying valid deductive reasoning to
them, mathematicians obtain—through a process called
mathematical prool-—new statements called theorems. These, in




(urn, are used as additional premises to build further theorems,
which are in turn used as additional premises...ultimately giving rise
ntire structures consisting of interconnected mathematical
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put what is missing from this picture? Think back to reasoning as a
way of knowing and the blender analogy discussed in Chapter 2.
Recall that in order to generate true conclusions, a deductive
argument requires not only valid reasoning, but also true premises.
How do we know if the axioms used by mathematicians as the
[oundations of their structures are true? That question turns out not
1o be simple. Actually, it is a critical knowledge issue in mathematics.

Historically, geometry was the first axiomatic, deductive system to be
developed. It was Euclid, 2,300 years ago, who identified the first
known set of axioms, only ten of them (the fewer, the better!). IHe
considered these axioms (which he called “postulates” and “common
notions”) to be true, derived from experience and requiring no
proof.‘f’ With one proof at a time—some less formal than others,
because Buclid “assumed details and relations read from the figure[s]
that were not explicitly stated”—Euclid’s system of plane geometry
was built. Students worldwide continue to study it in schools today.

For over 2,100 years, Euclidian geometry was considered to be
perfect knowledge. It was regarded not just as valid but as true—
true not only in its logical consistency (coherence test for truth) but
also true in the world (correspondence test for truth). Even more
significantly, Euclidean geometry was considered to be eternally
true.

No challenge came to the perfection of Euclid’s mathematical system
until the 19th century, and even then the challenge was not to its
validity but to its truth. What if Euclid’s axioms, the very
foundations of his system, were not true—or were not the only
possible truth?

The first four of Buchid’s axioms seemed self-evident because they
could be verified by drawing figures on the sand. The first required
juining two points with one, and only one, line segment; the second
required imagining that this line segment continues forever on the
flat ground; the third required constructing a circle centred on a
point; and the fourth required only that people compare right angles
they could easily draw, and conclude that the angles are congruent.
But the fifth axiom—known as the “parallel postulate”—was more
problematic, even for Euclid, who only inveked it upon proving his
29th theorem.” How could anyone ensure that you can draw only
one line through a point P that is parallel to a given line? Verifying
the truth of that axiom would require someone to accompany the
line forever, to ensure that it never intersects the first line.
Mathematicians tried to prove the fifth postulate as if it were a
theorem, and failed.

Independently of these quirky little technical problems, countless
generations benefited from knowing one of the theorems proved by
Euclid, that the sum of the angles of a triangle is 180°. They found
in geometry’s established truths easy ways to solve their everyday
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problems, such as determining how much wall to build around a
perimeter or calculating the area of their fields. Meanwhile,
mathematicians continued to struggle with the fifth postulate,
mainly by trying to prove that Euclid’s system was foolproof.

It was Carl Friedrich Gauss in the early 1800s who [irst noticed that
a geometry could be built without including Euclid’s fifth postulate.
Gauss paved the way for the non-Euclidean geometries of Nikolai
Lobachevsky and later that of Bernhard Riemann. Lobachevsky
replaced Eudlid’s fifth postulate with the idea that through a point P
next to a given line, at least two lines exist that are parallel to it.
Riemann, on the other hand, assumed that no parallel lines exist
through P, which logically implied that he had to adopt modified
versions of Euclid’s first and second postulates as well. (To
understand why, imagine Riemann’s geometry happening on the
surface of a sphere instead of on an infinite plane surface like
Euchlid’s. On a sphere’s surface, more than one line can be drawn
between two points, and lines cannot be extended indefinitely.8)
These non-Euclidean geometries—consistent and valid, though
based on different axioms—shook the very foundations of
mathematics.

Mathematics: definitions and playing by the rules

A farmer called an engineer, a physicist, and a mathematician and asked
them to fence the largest possible area with the least amount of fence.

The engineer made the fence into a circle, and praclaimed that he had
the most efficient design.

The physicist built a long, straight line of fence and proclaimed “If we
were to extend this length around the Earth, we would have the largest
possible area’

The mathematician just laughed at them. He built a tiny fence around
himself and said, "I declare myself to be on the outside”

It had been assumed that Euclidean geometry was true according to
the correspondence truth test, accurately describing space. How
could other consistent geometries be built using different axioms,
geometries that didn't have any bearing on reality? Were
mathematical systems not necessarily true? The answer to these
questions changed the whole notion of mathematical truth.
Mathematica] truth came to be understood as truth within a system:
mathematical statements could be true within the Buclidean system,
or true within the Riemann system. The only truth test relevant was
the coherence test, or in other words the consistency of every
statement with every other statement within its own axiomatic
sysiem.

Though Lobachevsky’s geometry hasn’t been shown to apply to the
cosmos, in 1916 Riemann's geometry did find a practical application.
The curved space of Einstein’s theory of general relativity is well
described by Riemann’s geometry.

We now consider axioms to be not “self-evident truths” but to be
the assumptions, premises, definitions, or “givens” at the base of a
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mathematical system. We still use the metaphor of foundations, but
recognize more than one possible construction. Euclid’s geometry

s more useful in building a house, Riemann’s is more useful in
(lying an airplane, and Lobachevsky’s, in accordance with his own |
quoted words a few pages ago, might one day find a practical |
application...or not. ‘ F

with the failure of Buclidean geometry to describe physical space as
had been expected, a vast amount of room opened up for the
creativity of mathematicians. Today, they do indeed have the
[reedom to declare whatever they please, independently of whether
their assumptions have any bearing on the real world or not.

Once a mathematician adopts any specific set of definitions and
rules, however, he must play by them—very, very stricily.
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Refisoiig 7
. For class discussion
. In what ways does the general public—like you and your family—benefit,

directly and indirectly, from the products of mathematical research?

: Make a list of the ways in which you're classified based on the numbers

© associated with you {e.g. your number amang other telephone owners).

. What parts of your life do numbers enter? If you seem to have more

. numbers attached to you than athers do, what has created this difference?

i With the pervasiveness of computers, might we as a cufture have become

: too attached to representations of the world in quantitative terms? Consider

! the following statement about world hunger: ... how we understand hunger

. determines what we think are its solutions. If we think of hunger only as :
. numbers—number of people with too few calories—the solution also appears |
to us in numbers—numbers of tons of food aid, or numbers of dollars in :
- economic assistance!”® Do you agree this might be the case? What would

i support this argument? What would counter it?

. For research and class discussion

- Identify three formulae or algorithms which you find interesting in your
current mathematics textbook. Research who developed them, and when

. and where they were developed. Why did you choose these specific three?
. Do they have anything in common? Share your insights with classmates.

i Investigate some of the specializations in which applied mathematicians

. collaborate with researchers in other fields. Does any of these fields appeal
i to you? Does it surprise you that being a mathematician doesn't necessarily
- imply working within a university?

Mathematical proof: challenging and beautiful

Euclid and Riemann both created knowledge by means of the

characteristic method of justification in mathematics: the proof. To

create a proof, as we have seen, the mathematician takes as his

premises the foundational axioms and all subsequent theorems and

proofs based on them. Then, with a problem or conjecture in mind,

he reasons toward a new conclusion, taking immense care to avoid

error in any step. In manipulating ideas in a process of pure

thinking, he creates new knowledge. That new theorem, in turn, 4
provides a base for further reasoning.
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Mathematicians, taking pleasure in such abstract creation, are the
more delighted if the proof goes beyond merely being valid. It
should be, as they say, elegant. The elegant or beautiful proof is
incisive and ingenious. It is economical in using as few steps as
possible and holds a little jolt of surprise as ideas fall neatly into
place. A swirl of a cape, a flash of a rapier and—voila—proved! Or so
the mathematician would like, ‘

When we liken mathematics to a game with its own internal rules,
we do not mean that it is trivial. Games can be Very serious.

However, mathematicians are not always very serious. What is the
invalid step in this proof?!°

What's wrong with this proof?

Given: A =18

Multiply both sides by A: A% = AB

Subtract B2 from both sides: A2- B2 — A8 _ g2
Factorize both sides: (A + B)(4 — B) = B(A — B)
Divide both sides by (4 - B: A + B =8
SinceA=B8B+B=2-

Add the Bs: 28 =18

Divide by B: 2 = 1

A new proof, no matter how beautiful it is, does not enter the realm
of mathematics until it becomes public knowledge: the truth of the
claim must be justified to the relevant knowledge community which,
through the process of peer review, must come to believe the claim’s
truth.

A good example of peer review at work is the rejection, for almost
four centuries, of all attempted proofs for what came to be known as
Fermat’s Last Theorem (FILT).

In 1637, Pierre de Fermat, as the story goes, was reading for
pleasure a book of ancient mathematics, a French translation of
Diophantus’ Arithmetica. Mathematicians still do not know what was
going through his mind when he wrote in the margin of the book
the message, “I have a truly marvellous demonstration of this
proposition which this margin is too narrow to contain, ”!! Without
ever sharing his proof, he died. Published posthumously by his son
in 1655, the note remained. Fermat had a solid reputation as a
mathematician, so it could not be dismissed lightly. But what was his
“marvellous demonstration”? Fermat had left to his successors the
most farmous unsolved problem in the history of mathematics.

We know from working with right triangles that many trios of
integers can satisty the equation ¢? = g*> + »2. What Fermat postulated
was that no trios of integers exist that can satisfy equations such as
G =a 4 b3 or = gt 4+ b*, and so forth, for powers greater than
Squares. Many mathematicians tried and failed to find a proof. Even
more just turned away to work on problems more likely to be
truitlul. Why waste time on FIT?
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whena proof was announced, it caused a sensation. It was in 1993
that British mathematician Andrew Wiles first announced he had
roved FLT. Wiles presented his 150-page paper at a conference as a
«raditional mathematical proof”, which omits routine logical steps
and assumes that knowledgable readers can fill in the gaps. Such
proofs rely on intuitive arguments which can be easily translated by
\rained mathematicians into rigorous deductive chains. Proofs are
usually presented this way because too much formality would
obscure its main points, much like watching a movie frame by frame
would distract the viewer from enjoying, or perhaps even
understanding, its storyline.

peer review went to work—and this version of Wiles” proof was
found to have a flaw. In Wiles” own words, “It was an error in a
crucial part of the argument, but it was something so subtle that I'd
missed it completely until that point. The error is so abstract that it
can‘t really be described in simple terms. Even explaining it to a
mathematician would require the mathematician to spend two or
three months studying that part of the manuscript in great detail.”!?
wiles went back to work, creating still more mathematics in order to
remedy the error.

In 1994 Wiles presented his amended proof. Again peer review went
to work—and this time the mathematical community accepted the
proof. Wiles became a celebrity overnight, surrounded by public
excitement over the solution of such a famous and longstanding
problem. Intriguingly, though, his proof of Fermat’s Last Theorem
cannot have been Fermat's own, as the 20th-century mathematics
on which it is based was unknown, back in 1637, to Fermat.

The story of this proof illustrates many characteristics of
mathematics as an area of knowledge. For one thing, it shows
something of its humanity—the fascination, the challenge, the
creativity, the aspiration, the disappointments, the sense of triumph.
At the same time, though, it reflects characteristics of more ordinary
mathematical endeavour—the level of care and detail demanded,
the peer review and its difficulties when the work is new and
complex, and the respect given to achieverent that the lay public
does not understand and for which there may be no apparent
practical use.

In 2006, Wiles” proof of FLT has not yet been developed into a
rigorous or formal proof, showing every single deductive step.
Compurter scientists have now been challenged to “formalize and
verify” it, and one of them estimates that he expecis this problem to
be solved in about 50 years.!?

{Indeed, contemporary mathematical proofs are rarely brief. In
2003, Russian mathematician Grigory Perelman announced that he
had solved a classical problem within the field of topology, the
Poincaré conjecture. In 2006, Perelman’s traditional proof was
confirmed after peer review.!* It was roughly a thousand pages
long.)

Clearly, the relationship between the mathematician Diophantus of
. . 143
ancient Greece, Pierre de Fermat of 17th-century France, and
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Dr Andrew Spray.
1B Diploma Programime mathematics teacher
and exarminer

Why do you love mathematics?
The challenge in rephying is that it is hard to give
one single reason. Among the features that are very
endearing are:
The elegance of the logic behind many dassic mathematical
proofs.
The unexpected connections between apparently distinct areas of
mathematics. €.8. € appearing in probability problems,
appearing in summing the inverse powers of numbers, the classic
g™+ 1=0
The beautiful patterns, usually unexpected, that arise between
numbers. eg. 3 cubed + 4 cubed + 5 cubed =6 cubed (or
23 4 43 + 5° = 6°).
The fact that areas of mathermatics developed solely for the sake
of pure mathematics turn out to have very useful applications in
the real world, for example comptex (or imaginary) numbers,
group theory.
The joy of being able to solve a complex problem and prove you
are correct.

| love mathematics for all these reasons, and more, but perhaps it is
the patterns, the searching for them and the joy of discovering them,
that captivate me most.

contemporary Andrew Wiles of Britain {(who developed his work in
the United States) highlights certain features of mathematical
knowledge. Its challenges and its products can last over centuries.
Yet once it is satisfactorily proved, the proof is permanent in all
places and all time, and the proven knowledge claim earns its place
as yet another brick in the edifice of mathematical knowledge, built
across boundaries of time and culture.

Placing the spotlight on the successful proois, however, may obscure
the contributions of the failures. Have their failures really been
failures for mathematics? After all, the development of mathematics
relies on failed attempts at proof as well as successes. Much new
knowledge is generated in attempts to solve problems; many
interconnections between mathematical fields are established. As
Wiles said about his oWn effort, “The definition of a good
mathematical problem is the mathematics it generates rather than
the problem itself.”?

Matheraarios ano 8 R ELET

with the creation of considerable mathematical knowledge through
the past century, mathematics is evidently flourishing. However, as
an area of knowledge with its characteristic means of justification,
mathematics has also faced criticism of its very foundations.




The growth of mathematical knowledge: exercise

by Manjula Salomon

In the following exercise, you will take on a
research topic, find out about it, and share youy
findings. Be prepared to identify your findings
according to historical time and place of origin.

Divide your group so that someone is
investigating each of the following topics. Allow
at least 20 minutes in the library or on the
Internet for the investigation. For finding the
most crucial details, your best source may be an
encyclopedia.

abacus
Ramanujan
calculus

Omar Khayyam
geornetry
algebra
algorithm
infinity

decimal system
probability
Pythagoras’ theorem
chaos theory
ZEro

Buclid
trigonometry

Create a timeline on the board or a large poster.
Each person or group should report the
information obtained and place the relevant
information on the shared timeline.

Questions for discussion
1 What interdevelopments do you see
between the various topics?

2 To what extent does your research suggest
that mathematics is an international area of
knowledge? How would you compare it in
this regard with other areas of knowledge?

3 Does your research challenge any of your
previous assnmptions? .

4 The development of mathematical
knowledge is often illustrated by a tree
diagram (that is, roots labelled as arithmetic,
the trunk labelled as calculus, etc.).
Mathematical scholars often select the
banyan tree as the best tree for such an
illustration. Why might this be so?

Note: Conventional division of the
mathematical history timeline separates it into
periods: earlier times to ancient Babylonia and
Egypt, the Greek contribution, the Far-Eastern
and Semitic contribution, and the European
contribution from the Renaissance onward.

Consider now the diagram at the beginning of this chapter for its

application to mathematics.

We have considered the creators of new knowledge, the Ko
characteristics of mathematical work, the role of peer

review in the process of public justification, and
mathematics’ relationships with the natural and
social world depending on whether we are
speaking of pure or applied mathematics.

Let us look more closely now at the role of the critic,
who applies critical thinking to a balanced examination

owledge Creation Diagram

within context of the natural world

knowledge work(s) of
creator(s) knowledge community
(math proof (peers, critics
research paper, general public)-
novel) -

within social context

of the justifications of the knowledge claims, seeking to

appreciate both their strengths and their limitations. The critics of
mathematics, those who evaluate each new mathematical work, are
themselves mathematicians—peers of the knowledge creator(s). At a
higher level of abstraction, though, are those mathematicians who
evaluate the entire area of knowledge, examining its knowledge
claims for their nature and their bases. Sometimes philosophers,
sometimes highly reflective mathematicians, sometimes meta-
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mathematicians, these critics concern themselves with such issues as
the reliability of the foundations of mathematics and the nature of
proof.

1n the early 20th century they reached a shocking conclusion: that
mathematical knowledge has flaws and limitations, implying that
mathematicians do not have an absoluiely unshakable basis for their
knowledge claims. Mathematicians had thought they had possessed
that solid basis before the development of non-Euclidean geometries,
and were hoping to restore the status of mathematics as a field

providing absolute, eternal truths.

So, after mathematicians realized that mathematical truths must be
evaluated using the coherence truth test (which implies that the
axioms they use as foundations need to be logically consistent), they
turned their attention o studying axioms morc attentively. Could
mathematics reach a state of completeness-—a state in which it
would be whole, having all jts necessary elements or parts? This
translated into another two questions. First, can all propositions be
proved or disproved from axioms within the system? Second, can
the consistency of the axioms be proved (can we be sure they don’t
contradict each other)? Bertrand Russell, working with Alfred North
Whitehead, had been ying to deduce the entire field of
mathematics from the principles of logic alone. They started with
arithmetic, by attempting to construct the real number system using
mathematical sets as a tool.1®

In 1901, they were disturbed to discover a contradiction regarding
those sets which are, or are 10t, members of themselves. If the set is
4 set of chocolate bars, for example, the set is not a member of itself.
However, if the set is a set of all those things that are not chocolate
bars, then the setis a member of itself. Russell discovered that he
could easily create a contradiction, no matter what objects he was
induding in the set, by creating a set of all sets that are not members
of themselves. Hence a member of the set would have 10 be {a) a
member of itself, because it is part of the set and (b) not a member
of itself, because that is what the set is—a set of things nof members
of themselves.

Russell's paradox had implications for all mathematics: if
mathematics is an intellectual game played by its own internal rules,
and expected to be complete and free of contradiction, then what
claim to knowledge can it have if there is an inconsistency within it?
Russell and others, including Gottlob Frege and David Hilbert in the
1920s, attempted without success to eliminate paradox from
mathematics.

Verbal analogies to self-reference and contradiction may give some
sense of what these mathematicians experienced. Self-reference,
after all, is not unusual in itself. Singers sing songs about singing
songs, poets write poems about writing poetry, and painters have
been known to paint paintings of painters painting. Hvery time you
use “17 you are using self-reference. Even refleciion on knowing in
TOK is often self-referential. Still more so is the research of cognitive
psychologists, who use their brains to think about the thinking of
the brain. ([ you wore a self-referential T-shirt, what would be the
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design on it? If you took a self-referential photograph, what would it
show?)

When self-reference creates contradiction, the results can be quite
witty. The writer Oscar Wilde once quipped, “T can resist
everything—except temptation” and on the basis of similar
cleverness became a favourite party guest for a while. Depending on
your sense of humour, you may find paradox quite entertaining as it
jams your mind with contradiction: “Disobey this command.” (Just
try doing that!) Ancient paradoxes live on to perplex us largely
because we enjoy them: Epimenides, from ancient Crete, uttered the
claim, “All Cretans are liars” or, in another version, “I am lying.”
Well, if he is telling the truth, does that mean he is lying? If he is
lying, does that mean that he is telling the truth? This kind of
paradox, many find, is immensely entertaining. But mathematicians
did not burst into laughter when Gédel made a similar move in
mathematics,

In 1931, Kurt Gédel published what is now known as “Godel’s
Incompleteness Theorem”, which basically states that the dream of
having mathematics reach a state of completeness is impossible to
achieve. There cannot be a guarantee, within any axiomatic system,
that the axioms adopted will not give rise to contradictions. There
will always be, in any formal system, statements that are not
decidable within it. Thus, no axiomatic system can ever prove its
OWn consistency.

G6del had no intention of knocking the supports out from under
mathematics—and also its hope of being the only area of knowledge
able to achieve absolute certainty because of its reliance solely on
reasoning. Godel intended exactly the opposite, actually—to ground
the axiomatic approach to mathematics the more firmly on logic.
With considerable ingenuity, though, he followed where his
reasoning led him, creating through a numbering system a means of
sell-reference within mathematics that led to internal paradox and,
ultimately, to the Incompleteness Theorem.

Despite having been shocked into the realization that mathematical
knowledge has limits, mathematicians survived, and kept on
working. The dream of absolute certainty is not attainable in
mathematics, nor is it attainable in the natural sciences, as we shall
see in the next section. But that doesn’t prevent us from learning as
much as we can, including learning to judge how much we can trust
the knowledge we glean. The revelation of the flaws in mathematics
has not stopped mathematics. On the contrary, it has given it a new
understanding of itself, new problems to solve, and new directions
for the mind.

G.J. Chaitin, a contemporary mathematician who stated that any
given number cannot be proved to be random,'® recently looked
back on the Incompleteness Theorem as almost inevitable—as a step
in mathematical progress now absorbed into further thinking. Like
Alan Turing’s later work and Wiles’s more recent proof, for him the
Incompleteness Theorem becomes clear in hindsight: “So you see,
the way that mathematics progresses is you trivialize everything!
The way it progresses is that you take a result that originally
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required an immense effort, and you reduce it to a trivial corollary
of a more general theory!” He speculated that in a century or two,
Wiles’s proot, hundreds of pages long. will be reduced to a single
page and understood readily in the context of mathematics
developed after its time. “But of course that's the way it works.
That's how we progress.”‘9 So maybe, after all that is said and done,
we'll finally figure out what proof to his last theorem Fermat had in
mind when he wrote that note in the margin.

Mathematical progress—perfect or imperfect—surely takes us to its
jvory tower, remote from the world in a realm of pure thought. Tt is
a particularly intricate tower, carved and incised with immense care
for detail, and elegant in its shape. Within it, pure mathematicians
build their proofs with little concern for practicality. while many
practitioners of other areas of knowledge wait, hoping that they will
produce the mathematical knowledge and language that will be
useful within their own fields. The remote tOWer, after all, has never
lost its connection with all the others.

Let us give the final word on mathematics to someone passionate
about it, IB graduate (1999) Gergana Bounova of Bulgaria, who
concluded an essay in TOK with a personal declaration about this
area of knowledge:

Ultimately, I am certain about one thing—mathematics is extremely
beautiful. Only a few can truly appreciate it. Beauty is not in the eye of
the beholder. Beauty is int the mind of the beholder. Mathematics 1S a
sophisticated toy you carn play around with until reaching total
intellectual satiation. It is unbelievably perfect and this is why I feel it
is not the universal language. The world is an interesting but imperfect
place and needs something to balance it. So let's dream in mathematics

and wake up in the real world.

Has the study of this section changed your anderstanding of, or your
feelings about, mathematics and mathematicians? If so, in what
Ways?

As we move from mathematics to the sciences and history, the clear
light becomes increasingly dappled with recognizable shapes of the
world—trees, animals, and passing human beings. We have lett the
realm of pure thought and are entering the world and the areas that
study it.

In your diagram or lists at the beginning of this chapter, what
connections did you make between physics, chemistry, biology,
psychology, economics, anthropology, and history? In TOK, the first
three are natural sciences, the second three are human sciences, and

1 history stands on its OWIL. However, for the moment, We will consider
all ol them wogether.

The Magic Gopher:
www.learnengish.org.uk/ games/
magic—gopher—centra'..swf.







