As far as the laws of "TMATHEMATICS IS THE

mathematics refer to reality, ¢ SUBJECT WHERE WE
they are not certain; and as far NEVER KINOW WHAT WE
as they are certain, they do not ARE TALKING ABOUT,
refer to reality. | NOR WHETHER WHAT
Albert Einstein iWE ARE SAYING IS TRUE.
‘ | Bertrand Russell
WHEN YOU HAVE ...it1is certain that the real function
SATISFIED of art is to increase our self-
YOURSELF THAT consciousness; to make us more

THE THEOREM IS aware of what we are, and therefore

TRUE, YOU START of what the Universe in which we
PROVING IT. live really is. And since mathematics,
Arthur Koestler in its own way, also performs this

function, it is not only aesthetically

charming but profoundly significant.

1t is an art, and a great art.
i John W, N. Sullivan

Viathematics

If mathematics describes There is nothing that can be said by
an objective world just mathematical symbols and relations
like physics, there is no which cannot also be said by words.

reason why inductive The converse, however, is false.
methods should not be Much that can be and is said by
appied in mathematics just words cannot successfully be put
the same as in physics. into equations, because it is
Kurt Godel nonsense.
C. Truesdell

Mathematicians may have trouble taking to non-
: : speclalists about what they do — but they also have trouble
! ; : talking to each other. The idea that maths is some kind of
uriversal language ie & myth — mathematicians from
different areas simply cannot understand one another.
Anon

Mathematics is created in the You can not app[y mathematics
self-alienation of the human as [ong as words still becloud
spirit. The spirlt cannot discover ! reality.

itself in mathematics, the human Hermann Weyl
spirit lives in human institutions.
Giovanni Vico

{
On each decision, the Nobody untrained in geometry 5
mathematical analysis only may enter my house.
got me to the point where my || Plato

intuition had to take over.
Robert Jensen j
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HHNS By the end of this chapter you should:

1 understand the axiom-theorem structure of mathematics

IJ understand the implications of this structure for mathematical
truth

Il understand the role of logic in mathematics and the link to
rationalism )

Ui be able Io discuss possible links between mathematics, science,

art and language

understand why mathematics may be regarded as an extremely

creative discipline

i have some insight into the process of attempting to establish a
theorem to describe a situation

i1 understand that the initial promise of the axiomatic approach
has been undermined by Gédel, and he able to mention possible
implications of his ideas.
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_ Introduction
It may ot be obvious immediately why a book with a
philosophical leaning contains a chapter on mathematics. What
could be less ambiguous, more clearly defined and less open to
interpretation than a mathematical problem? A maths problem
may not be resolved easily, but there is a right answer, and little
room for debate — we are probably all too familiar with the
rather tedious and long-winded maths exercises which are
marked right or wrong. So why would we include such a dry
topic in a course such as this?

The answer is two-fold. Firstly, the relative certainty of
mathematics is exactly the reason we need to include it — if it
presents us with indubitable knowledge then we need to learn.
precisely how it does that and see if we can apply the technique
elsewhere. The techniques of mathematics may provide us with a
tool that will be central to our search for reliable knowledge.
Secondly, we will argue that the stereotypical image presented
above is just that — a stereotype. There is far more to
mathematics than the rigid application of formal rules to
meaningless systems of symbols (although this may, arguably, be
the end result). It is creative, imaginative, deeply satisfying and
in some ways similar to those disciplines sometimes considered
diametrically opposed to mathematics — the arts,

Marhematics is a subject which everyone finds difficult at
some stage. There are often negative attitudes to the subject, and
these arguably stem from the requirement to learn a large body
of knowledge that seems to have few relevant applications.
However, maths is also an immensely powerful tool in its
application to science (at least) as witnessed by cars, telephones,
computers, moon landings, aeroplanes and atomic bombs. It
plays a central role in any technology, and is increasingly finding
its way into apparently unrelated fields such as history, medicine,
psychology, art and music. To some, maths is pointless and
irrelevant and they will not bother with it if they can avoid it.

introduction
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To others it is fascinating and a source of never-ending delight.
That a topic can appeéar in such diverse contexts, and in such
different ways to different people — this alone makes it well
worth studying.

4 IMATHEMATICS

Mathematics: invention OF discovery?

When you solve a mathematical problem, you probably feel like
you are finding the solution. You may feel that mathematical
truths are always true. 2 + 2 = 4; no argument there. And
242,324 is an even number, whether we like it or not. We would
be foolish to look for a triangle with seven sides. Consider 345 X
53, You probably can’t do it in your head, but you could work it
out given a pencil and paper and a little time. Certainly with a
; calculator the answer could be found quickly. The correct answer

s 2 doesn’t depend on who does it, when they do it or how they do

‘ i it. They may get it wrong, of course, but the answer itself is
\! always 18,285. We have no choice as to what the answer is. We
‘I
f
%

have to find it.

Imagine we contact alien life forms and iry to communicaie.
Will we find that they believe in different mathematical results? i
! will they have calculated different mathematical answers to us?
i \ 1f they have calculated , for example, will they have found the

same value as us? Wil they believe that 2 + 2 =47
The view that ‘maths is out there waiting to be discovered’ is
1 \ called the Platonic view of maths, after Plato, who thought that
i H mathematical truths are eternal
! and unchanging. At first sight, this
\{. seemns very appealing, as we have

seen from the examples just
given. However, there are some
\ difficult questions for Plato to
answer:

1|. 11 ‘Where does mathematics exist?
l‘ & How do we ‘discover’ maths?
: 1 Why does the ‘real world’ obey mathematical laws?

These are quite profound problems, because many find that the
| only reasonable answers tend to suggest that, contrary to what 3
1i‘ we initially suggested, mathematics is purely in the mind. Now g
Plato would not have minded this (he argued that we arc just

\f. ‘remembering’ things we already knew but had forgotten) but

'i . this sort of answer doesn’i !
carry much weight today. :
If we find that -
mathematics is really in i
the mind then isn't it an |
invention? This may *
answer the problems |
mentioned above {(how?),

but it raises its oWn

difficulties.

24 Looking for +/2
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Surely we can’‘t have invented the fact that 2 + 2 = 4? That
goes against all common sense! If maths is invented, why
don't different mathematicians invent different mathematics?

g If maths is invented, in the same way that artists invent art,
how can answers to mathematical questions be right or
wrong?

It has been suggested that mathematicians would fike maths to be
discovered,— that is how they feel emotionally towards their
work. They talk about ‘“discovering’ theorems and this attitude
pervades their working life from Monday to Friday. However, if
pressed hard on the matter, when philosophising at the
weelkend, most will retreat away from ‘discovery’ to ‘invention’
as they cannot logically justify “discovery’ to their satisfaction.
One mathematician who refused to retreat in this manner was G.
H. Hardy, one of the great number theorists of the twentieth
century. In A Mathematician’s Apology he wrote:

I began by saying that there is probably less difference between the
positions of a mathematician and of a physicist than is generally
supposed, and that the most important seems to me to be this, that the
mathematiciar is in much more direct contact with reality. This may
seem 4 paradox, since it is the physicist who deals with the subject matier
usually described as ‘real’; but a little reflection is enough to show that
the physicist’s reality, whatever it may be, has few or none of the
attributes which common sense ascribes instinctively to reality. A chair
may be a collection of whirling electrons, or an idea in the mind of God:
each of these accounts of it may have its merits, but neither conforms at
all closely to the suggestions of common sense.

I'went on to say that neither physicists nor philosophers have ever
given any convincing account of what ‘physical reality’ is, or of how the
physicist passes, from the confused mass of fact or sensation with which
he starts, to the construction of the objects which he calls ‘real’. Thus we
cannot be said to know what the subject matter of physics is; but this
need not prevent us from understanding roughly what a physicist is
trying to do. It is plain that he is trving to correlate the incoherent body
of crude fact confronting him with some definite and orderly schewme of
abstract relations, the kind of scheme which he can borrow only from
mathematics.

A mathematician, on the other hand, is working with his own
mathematical reality.

Of this reality, I take a ‘realistic’ and not an “idealistic’ view ... This
realistic view is much more plausible of mathematical than of physical
reality, because mathematical objects dare so much more what they seem.
A chair or a star is not in the least like what it seems fo be; the more we
think of it, the fuzzier its outlines become in the haze of sensation which
surrounds it; but ‘2 or ‘317 has nothing to do with sensation, and ifs
properties stand out more clearly the wmore closely we scrutinise it. It may
be that modern physics fits best into some framework of idealistic
philosophy — I do not believe it, but there are eminent physicisis who say
so. Pure mathematics, on the other hand, seems to me a vock on which
all idealism flounders: 317 is a prime, not because we think so, or
because our minds are shaped in one way rather than another, but
because it is so, because mathematical reality is built that way.

Mathematics: invention or discovery?
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4 MATHEMATICS

Although this is eloquently put, many other mathematicians
have disagreed. To begin to derive some insight into this difficult
question, we should exantine the nature of mathematics itself
more carefully. If we can see exactly why maths differs from the
sciences and other disciplines, then we might be able to make
SOIMe Progress.

-

The nature of mathematics

Philosophy > o game
with ebjectives and no
rules.

Mathemarics i a
game with rules and
1o objecitver.

What is the average of this set of numbers?
1,1,1,1,3,4, 4,4, 5,5, 1027
The answer, of course, depends on what we mean by ‘average’.

v1 1f we mean ‘add them up and divide by the number of items’
then the answer is 96.

o If we mean ‘the most common number in the list’ then the
answer is 1.

1 If we mean ‘the number in the middle of the list’ then the
answer is 4.

So which is correct? Which is true? Mathematicians use all three
meanings — they are called the ‘mean’, ‘mode’ and ‘median’
respectively. This may seem like a trivial matter, but it is actually
central to the nature of mathematics. It doesn’t really matter
which definition of ‘average’ we use but, once we have decided,
there is only one correct answer. Now some definitions may be
more useful than others — we may have good reasons for picking
one definition over another but until we have decided where to
start from we can make no mathematical progress.

Mathematics always works this way. We start from ceriain
assumptions and definitions, which we call axioms. We take
these without question. From these we can use the rules of logic
to work out problems and to find other results, which we call
theorems and which are known with complete certainty.
Beyond the school level, proving theorems is largely what
mathematics is all about.

As a simple example of the mathematical process, irmagine a
child learning about odd and even numbers. She starts by being
given a list of odd numbers 1, 3, 5,7, 9, 11, 13 ... and even
numbers 2, 4, 6, 8, 10, 12, 14 ... Her first job is to tell whether
other numbers, say 34, 77 and 66 are odd or even. Once
competent in this, she may notice a few patterns. It seems that
adding 1 to an odd number gives an even number, and adding 1
to an even number always gives an odd number. It also seems
that it's only the last digit that makes a number odd or even; the
other digits don’t make any difference. She may also spot that
adding two odd numbers always gives an even number, or that
multiplying two even numbers always gives another even
number.

Well, we need to be careful here. We are using the word
‘always’ a little hastily. After all, there Is an infinity of numbers,
and the child has only experimented with a few dozen. With
several examples, she may have a pretty good idea that the pattern
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always holds, but this isn't enough. A scientist or historian may
have to rest content with ‘sufficient evidence’ (whatever that may
mean), but the mathematician can go one step further. In this case,
we can easily prove that the patterns are true for all odd and

even numbers. Two examples are given below. They may seem a
little pedantic, but the techniques can be generalised to more
difficult cases, and they allow us to arrive at certain knowlédge.
Given the axioms, it is impossible to doubt the conclusion of these
steps.

Axioms

1 An odd number is a number which can be written as 2rn + 1,
where # is a whole number.

An even number is a number which can be written as 2#,
where # is a whole number.

@ The usual laws of arithmetic apply.

Check that the definitions of odd and even numbers make sense
to you, Experiment with. them until you are happy that they are
correct definitions. Let # be 5, 7, 50, 100 or anything else you
like and see what you get in the two definitions (this ‘playing’ is
a vital part of mathsj).

Theorem 1: An odd number and an even number add together
to give an odd number.

Proof: Let the odd number be ¢ and the even number be ¢.
Then 0 = 2m + 1 and e = 2m for some whole numbers # and
m, by definition.

Soe+e=2n+ 1+ 2m
=2m+ 2n+1
=2m+n +1
= 2p + 1 where p is a whole number
but this is of the form 2» + 1 and hence odd. QED

Theorem 2: Two odd numbers add together to give an even number,

Proof: Let the odd numbers be g and 2.
Then a = 2rn + 1 and » = 2m + 1 for some whole numbers #
and .

Soa+b=2n+1+2m+1
=2m+2n+ 2
=2m-+n+1)
= 2p where p is a whole number
but this is of the form 2# and hence evern. QED

These are hopefully straightforward examples, and the results
hardly need formal proof — we knew’ they were true beforehand.
However, more complex problems are only really understood
once the proofs have been developed, or counter-examples
found, and formal proof is what mathematics (beyond the school
level) is all about. New mathematics happens in precisely this
way — there is a result which may be believed to be true, but not
accepted until the proof has been found. The proof is everything,
and this is the defining characteristic of mathematics.

The nature of mathematics




4 MATHEMATICS

58

A Prove the following thecrems:

Theorem 3: Trebling an even number results in ancther even
number.

Theorem 4: Two even numbers multiplied together give an even
number.

Theorem 5: Trebling an odd number gives another odd number.

Theorem 6: An odd number and an even number multiplied

. together give an even number.

Theorem 7: Two odd numbers multiplied together give an odd

number,

You have probably noticed that the claim was made for ‘ceriainty’
but not for ‘truth’. This is an important distinction and we can see
that the ‘“truth’ of mathematics will depend on the axioms. We may
apply all the logic we want, but if the axioms we start with aren’t
any good then we won't get anywhere (this is the ‘garbage-in,
garbage-out’ principle). In the example above, we took as
axiomatic, ‘An odd number is a number which can be written as

211 + 1, where # is a whole number.” Is this true? In a way, it is hard
10 see how it could be true or false — there are numbers of the form
an + 1, and we can call them odd if we want 10. All we are doing is
giving certain things certain names. Does a pentagen really have
fAve sides? Well, yes, but only because we define pentagons to be
five-sided shapes! If we want to take these as certain truths then it
has to be said they seem rather empty of content.

The plus side of this method is that if we accept the axioms as
true then we do not have to worry about the truth of the
conclusion — if we have done our maths right then the
conclusion is guaranteed. Tn this sense, all maths is implicit in
the axioms. H. A. Simon writes:

All mathematics exhibits in its conclusions only what is already implicit in
its premises. Hence all mathematical derivation can be viewed simply as
change in representation, making evident what was previously true, but
obscure. This view can be extended to all of problem solving — solving 4
problem simply means representing it so as to make the solution transparent.

A \What is the relationship between truth and mathematics? Why has
it been said that maths is a formal game or a closed system?

B s all mathematics really just a change in representation? Might
the same be said of any other forms of knowledge, ar even all

forms of knowledge?

S0 the relationship between truth and mathematics is a difficult
one. For our purposes, we can merely note that maths may be
certain, but it is far from obvious that it is true, in the usual
sense of the word, because the truth of the axioms is not clear.
This might suggest that if we could somehow find more definite
axioms, the mathematical method of logical deduction might
provide a wonderful method for acquiring knowledge. All we
need to do is find some certain axioms from which to start. Ren¢
Descartes had the same idea several hundred years ago. This
form of approach to knowledge is called rationalism, and is still
hugely influential in many spheres of intellectual life today.




_ Maths as a creative art
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So far we have concentrated on the logical side of maihs.
Certainly, logic plays a very central role, but there is more to
maths than that and, in particular, there is a great deal of
creativity and imagination. You may not have seen much
evidence of that in the proofs of theorems 1 and 2 (page 57),
where each step followed logically and there seemed to be litile
room for driginality or inspiration. But we can easily find

Maths as a crealive art

e problems where a ‘logical” approach {what does that mean
Bertrand Russell anyway?) doesn't get us very far.
v Recall that we say that a positive whole number is a prime
€ i number if it has exactly two factors. That is,
1y : 2 is prime because 2 = 1 X 250 1 and 2 are the only
t i factors of 2
t and 17 is prime because 17 = 1 X 17s0 1 and 17 are the
only factors of 17
3 but 21 is not prime because although 21 = 1 X 21
1ard : {so 1 and 21 are factors of 21) we also have 21 =7 X 3
nm ;‘ {(so 1 and 21 are not the only factors).
g is . With this in mind, we can see that the first few primes are 2, 3,
< 5,7, 11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
e 73,79, 83, 89,97 ...
ait Now these numbers prove to be very interesting to
mathematicians, because they are to arithmetic what the
$as elements are to chemistry. In chemistry, you study the elements
so that you understand how more complex substances (which
are made up of elements) behave. So, too, in maths we can
n study prime numbers with a view towards generating insights
which work for ‘more complex” numbers. So, let us ask ourselves
tin a few questions about primes:
15 ® Are there any more even prime numbers after 27
ut # How many prime numbers are there?
! Do the gaps between the primes keep getting bigger?
rarent Can you answer these questions? Can you prove them? Things
y has are getting a little more complex here. There is no immediately
2 obvious way to start trying to prove these — you may have a
jht pretty good idea about the answer (your intuition may be quite
all well developed) but the formal, logical proof is far from
straightforward. And, of course, until the proof is there,
mathematicians are going to look at intuition with a fairly
Acult sceptical eye. And what about these questions:
' be B Is there & prime between » and 2# for any value of #?
1 Is there a prime number between successive square
lear. numbers?
finite B How many prime numbers are exactly 1 more than a square
it number?
we How many pairs of prime numbers are there which differ by 2
- Rene (for example, 11 and 13 or 10,006,427 and 10,006,429)7
us- ® [s every even number greater than 2 the sum of two prime
s still numbers? 59 |

Y.
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How to start these proofs? It is not at all obvious; the definitions
of “prime’, ‘square” and ‘even’ do not really seem to help; and
there is no clear way to begin. In fact, if you can answer, and
prove your answer, to cither of the last two guestions then you
will be a very, very famous mathematician. {The last question
was set by Goldbach, 16901764, who notoriously conjectured
that there is an infinite number of such pairs. It Temains ore of
the outstanding problems of number theory.)

Of course, we are less interested in the actual problems
themselves than we are in what they tell us about the nature of
the discipline, but you must not imagine that your experience of
some of these problems is all that different to that of the
professional. You may both look at a problem, understand what
it is that you want to do, but be unable to see a way of doing it.
The difference is that in school maths you can ask your teacher
or look up a text, but for the professional, there may be no one
to ask and no books to consult. He is on his own, and he has to
come up with something new, something that nobody else has
ever thought of.

A Have you ever solved a maths problem when no one had told
you a method or a way of doing it? Have you ever found a
solution all by yourself?

B How is this process similar to or different from the scientist, the
historian, the novelist or the musician at work?

C So how do mathematicians do it? How do they come up with
new ideas?

Of course, part C of this question is impossible to answer. If we
could answer it, then we would be back to the stage of reducing
maths to a recipe, and mathematicians would merely be
following the instructions. We can point to factors that may
help creativity — relevant experience, love of subject or
whatever — but these are not, in themselves, enough. Plenty of
people may be trying to create (discover?) something new, and
they may all have ‘the right background’, but only one actually
manages it. The key to their insight is often as obscure to ihe
mathematician as it is to anyone else. Creativity cannot be
quantified easily. Recognising this is perbaps the key to
understanding why some mathematicians see themselves as
artists, and certainly key to understanding why some maths is
considered ‘great’ and other maths not. Great maths, like any
great art, does not follow well-trodden paths, nor does it apply
tried and tested techniques. Instead it does something genuinely
new, deep or profound. Like any great art, great maths is
beautiful. The idea of beauty in maths has never been better
expressed than by G. H. Hardy:

A mathematician, like a painter or a poeL, is a maker of patterns. If his
patlerns are more permanent than theirs, it is because they are made
with ideas. A painter makes patieris with shapes and colours, a poet
with words ... A mathematician, on the other hand, has no material o
work with but ideas, and so his patterns are likely to last longer, since
ideas wear less than words.

ottt proiviom |
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The mathematician’s patterns, like the painter’s or the poet's, must be
beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place for
ugly mathematics.

He goes on to say:

I have never done anything ‘useful’. No discovery of mine has made, or
is likely to make, dirvectly or indirectly, for good or for ill, the least
difference tcf the amenity of the world. Judged by all practical standards,
the value of my mathematical life is nil. I have just one chance of
escaping a verdict of complete triviality, that I may be judged to have
created something worth creating. And that I have created something is
undeniable: the question is about its value. The case for my life ... is that
I have added something to knowledge . .. and that this has a value which
differs in degree only, and not in kind, from the creations of the great
mathematicians, or any of the other artists, great or small, who have left
some kind of memorial behind them.

A |s mathematical creativity the same as other types of creativity? If
not, what are the differences?

B Although Pythagoras' theorem is named after Pythagoras,
anyone could have ‘found’ the theorem. Contrast this to
literature. Could anyone else have written Shakespeare's or
Dostoevsky's works? How about music, poetry or architecture?

C It is unfortunate that so much mathematics remains inaccessible
to so many. However, we can see where aesthetic appeal comes
in from a few simple examples. Consider the following
mathematical statements:

w1 1 1

Vie=+4 5ot mtEte’
1+3=4 T O2X2XAXAXEXEXEXEX ...
2 TIXTX3X3IXEXEXTXIX. ..
2764/23=116.26 54+9=2
a2 =h? + 2 e*+1=0
a
b 1#2_3_ . n
2 4 B 2n
c

352 — 252 = (35 - 25)(35 — 25)
=60x10
=600

Could any of these statements be considered beautiful in any
way? You may find it helpful to consider notions of brevity,
simplicity, truth, utility, elegance and surprise.

D s there any difference between the beauty in maths and the
beauty in, say, music?

Maths as a creative art
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A little more about axioms

The inirh of @
theorem depends on
the fih of the
axioms, bui axioms
canmoi be 1ue 6!
fa!se.

Anon

vou have seen that the choice of axioms is central t0
mathematics. So how do we choose our axioms? It may seeim at
first that we have no choice over out axioms, at least in cextain
fields. After all, isn't it true that 5 + 9 = 14 no matter what our
axioms are? Well, in fact no! We can easily change our axioms’so
that 5 + 9 = 2rall you have 10 do is think about clock
arithmetic. Moving the hour hand five hours ahead followed by
nine hours ahead is the same as moving it two hours ahead. We
then generate & whole lot of other “truths’, suchas11 +1=0,7
% 7 = 2 and so on. These are mathematically correct in the
axiomatic system described. We can choose that system and then
it follows that 5 + 9 = 14 will no longer be true!

So 5 + 9 = 2 after alll

So why do we use the number system that we do? The answer is
simply that we use it when it is convenient 0 do so. In the
physical world, when we add five things to nine things, we end
up with fourteen things, so we say 3 9 = 14. But on a clock
face that doesn’t work, so we USe€ another system. Similarly, you
may see chapters in a book numbered 1.1, 1.2, 1.3 ... all the
way up to 1.9 and then 1.10, 1.11, 1.12. This is incorrect in our
normal numbering system, but it is convenient to use in this
context. In quantum mechanics, physicists use a systerm whereby
it is possible for one particle and another particle to add up to no
particles, simply because it works. So this is the first way we
choose our axioms — We S€€ what is useful.

Of course, after reading the last section you know that not all
mathematicians are mathematicians because they want to do
something useful! They are far more interested in finding
insights, elegance and surprises. This aftects the choice of axiom,
too. Sometimes an axiom can be chosen which seems at odds
with anything useful at all. For example, it is possible to
construct versions ol mathematics where the ordex of
multiplication is important, that is, where a X b is not the same
as b X a. Now our ordinary numbers don't work that way, but
we can get some very interesting maths like this. The surprising
thing is that, if we construct this maths, it often turns out, latex
on, that a use can be found for it, even though it was designed
purely with aesthetic properties in mind. This seems to indicate a
profound truth about the Universe, and reminds us of Hardy’s
comment: ‘Beauty is the first fest: there is 1o permanent place for ugly
mathematics.’ 1t would be a wonderful thing indeed, if, as the
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physicists Dirac and Einstein hoped, the mathematics describing
the world is, at a deep level, profoundly satisfying aesthetically.
Perhaps the two methods of choosing axioms, utility and
elegance, are not so different after all.

S0 we are perfectly at liberty to choose any axioms we want,
and to work with them to see what develops. Some sets of
axioms (the vast majority) will be sterile and uninteresting.
Others will generate rich areas with seemingly endless practical
and/or desthetic possibilities. Versions of mathematics that are at
first sight bizarre are easy to dismiss, but like the genius artist
who starts a new style of painting or music, the genius
mathematician is the one who chooses the axioms nobody else
even suspected.

A In clock arithmetie, calculate the following:

5+8 3x2
2—-4 5 X 10
8 —-12 11+ 12

B what are the right axioms for arithmetic? |s everyday arithmetic
‘true’?

You may think that this axiomatic approach must be very
tedious; must even professors start right from the basics and
prove everything absolutely rigorously? The answer is no; in
praciice once someone has proven a result to the satisfaction of
the mathematical community then that result can be used
without further prool. So, for example, you can use Pythagoras’
theorem, or the cosine rule, or the formula for the area of a
circle, quite happily as they have been proven already. In theory you
could go right back to the axioms and prove them again from
scratch, but there wouldn't be much peint in doing so — even
though it must, in theory, be possible to do exactly that. When
we use these already-established results as the basis of work we
tend to refer to them as theorems rather than axioms, reserving
the term axiom for the very basic results, but in practice they play
the same role; we use them without proof. The difference is that
‘real’ axioms cannot be proven as they are the original starting
points; whereas theorems have already been proven and so can be
used as more advanced starting points. Mathematicians have a
huge body of theorems on which they draw; it is unheard of
these days for them to go back to the axioms, not least because it
would take so long to do so. Mathematicians are human after all!

Considering this axiomatic method may offer a resolution of
the discovery/invention dilemma. We are free to invent
whatever axioms we choose, and we then discover the
consequences of our choices. What we are saying here is, in a
sense, blindingly obvious — that we must start our argument
from somewhere, and even if we don't like the starting points we
can develop an argument from them. Any lawyer knows this!

It turns out, however, that there are some very surprising
consequences of adopting such an approach. In adopting an
axiom, mathematicians are committing themselves to its logical

A litile more about axioms




consequences, so they are careful to choose ‘safe” axioms. The so-
called ‘axiom of choice’, for example, first noted by Ernst Zermelo
in 1904, states, roughly, that if you have a cotlection of non-
empty sets, then you can make a new set by choosing elements of
the original sets. So, for example, if you have 15 rugby teams,
then you can create a new team of 15 by choosing one player
from each of the 15 teams. This seems almost 100 obvious to
hotlfer stating — and it turns out that if you reject it then you have
1o reject a lot of standard maths with very practical applications in
the real world. To lose this axiom would hobble maths. So far so
good — why would you reject such an intuitively obvious axiom?
Why not accept the axiom of choice and all its consequences?
This is where the details get very technical but, to cut a long story
short, the axiom of choice has some consequences which are so
counter-intuitive that some mathematicians have actually

* rejected it — and when you consider how ‘obvious’ it is, this is
extremely surprising. The irouble is that if you accept the axiom
you have to accept its consequences, and one of them goes by the
name of the ‘Banach-Tarski paradox’, after its discoverers
(inventors?). This states that you can take a mathematical sphere
the size of a tennis ball, cut it up into little pieces, and simply by
re-arranging these pieces without changing their size, make a sphere
the size of the Earth (an internet search will give you far more
details if you want them)! For many, this is just too ridiculous to
accept; but, hard as it may be to belicve, it is the consequence of
an ‘obvious’ axiom.

4 MATHEMATICS

A Give an example of what it means to create a new sef from a
collection of non-empty sets. Do you think it is always possible to
do this?

B Do you think it is possible to cut and rearrange a mathematical
sphere and obtain a bigger one?

C How would you deal with the fact that agreeing with the first
guestion above commits you to agreeing with the second? Which
of your answers would you change?

D Why do you think very, very few mathematicians are happy with
saying ‘'Yes' to the first question but ‘No” to the second?

Many mathematicians are not too perturbed by these extremely
odd theorems — after all, they apply to the world of
mathematics, not the physical world. You rnight think that the
axiomatic approach is then a good way 1o proceed —and this
was indeed the way that mathematics did proceed last century.
when the possibilities for this approach seemed enormously
exciting. The German mathematician David Hitbert started a
search for the perfect mathematical tool — a method of telling for
sure whether a theorem could be deduced from the axioms oY
not. He wanted to find a step-by-step recipe which would
determine mechanically whether or not any theorem was true
or false in the given axiomatic systerl. Recalling that
mathematics is about proving theorems from axioms, and that
she theorems follow by the rigid application of logic to the
axioms, this does not seem like too much to ask; we want aii
.64 algorithm (or compuler program) into which we can fced the
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axioms, and the suggested theorem, and then be told if the
theorem is correct. All we need to do is find a way to formalise
the process of logical deduction into a set of formal rules. This
would then provide an incredible shortcut to the mathematical
process. In the early parts of the last century, this seemed very
exciting.

But alas, this dream was proven impossible in 1931 by the
Austrian Kurt Gddel, at the remarkably young age of 25. In two
breathtakingly ingenious theorems he proved that Hilbert’s
dream was impossible; that in all interesting mathematical
systems there will always be mathematical theorems
which are true, but which cannot be proven right or
wrong from the axioms no matter how clever or inventive we
are.

Godel's proofs may not sound particularly revolutionary at
first, but some of the consequences of this innocent-sounding
statement are still hotly debated and it is not an exaggeration to
say that the two theorems permanently destroyed a dream of
mathematicians just at the time when they seemed to be on the
verge of providing us with a complete picture of the
mathematical universe, For mathematicians, the consequences
are either depressing or delightful, depending on their point of
view. The pessimists lament that mathematics can never be
completely reduced to a set of rules which can be rigidly applied
and guaranteed to determine truth. The optimists rejoice that the
grand game will never end, and that there will always be a place
for human ingenuity.

If Godel's results applied only to mathematics they would be
of limited interest, but they may well extend further. It has
been argued that, since much physics is based on mathematics,
if maths is incomplete in principle then so is physics. This
means that there are true scientific results which we will never
be able to establish. This might mean that we can never reach
the end of science — that certain things will be forever beyond
us. Gddel's ideas may also prove that humans will always have
more powers of logical insight than computers! The details of
this argument are too complex to discuss fully, but briefly, one
controversial interpretation of it is that Gédel proved that given
any complex computer program a human mathematician could
always tind a mathematical truth, which the program could not
decide was true or false. In addition, the human could also
prove that this statement is true! Re-read these last statements;
the implications may be vitally important for our view of
ourselves as humans. If humans can do something that no
computer can do, then this might mean that there is something
about human intelligence that can never be attained by any
computer, even in principle. If this controversial interpretation
is correct, it has dramatic implications for scientific research
into computing techniques. It might prove, finally, that it is
impossible to have a computer which can think like us!

Many thinkers feel sheer astonishment that a purely logical
result can offer such insight into human cognitive processes,
though the insight is hotly disputed. On a more general

A little more about axioms




4 MATHEMATICS

e

.88

phﬂosophical note, some have interpreted Gadel as sounding &
death-knell for the whole possibility of certainty, arguing that i
complete certainty cannot be found in mathematics, of all places. 4
then it cannot be sound anywhere at all. To consider this MOre :
carefully, you will have to look inl detail at precisely when
Godel's results hold, and precisely what they say. For our,
purposes, W simply note that, even il we could apply the
mathematical method to other systems of knowledge, W& would
by no means have the perfect truth-generating machine. We cani
gee that no such thing exists, even in the world of mathematics.

A Do you think it is a shame or a great thing that mathematics
cannot be axiomatised?
B Do you like the controversial implications of Godel's theorem?

We have so far looked at mathematics as a structure, and
examined the model of a deductive axiomatic systein heavily
focused on formal proots. While this is a commuonly held view,
Nietzsche and while proofs are the ‘content’ of the subject, it does overlook
s ghe whole Process of actually doing mathematics and the fact
that it is done by bumans — at least for the most part!

Once we identify this gap, some obvious poinis emerge. Firstly,
there is the obvious fact that people make mistakes! We may
think we have a result that is ‘certain’, but that may simply be
because we have made an €rror, and the history of mathematics
is Hitered with false ‘proofs’. Perhaps the most famous example
of this is the German mathematician David Hilbert's 21st
problem; last century he gave a list of challenges and the best
minds in the mathematical community set out to solve them.
The 21st problem in the list was proven in 1908, and according
to a simple model of mathematics you might think this was the
end of the matter — but in fact a counter-example 10 the theorem
was found in 1989, and only then did mathematicians discover
that the proof was incorrect! Exic Bell has gone SO far as 1o say
that ‘Experience Has taught most mathematicians that much that looks
solid and satisfactory 10 9ne mathematical generation stands a fair
chance of dissolving into cobwebs under the steadier scrutiny of the next’
and one wonders how many other mathematical ‘tyuths’ are, in
fact, false.

A further and perhaps more important problem is that there
are fads and fashions in mathematics, just like in any other
human endeavour, and so the very standards of mathematics art
open to change = contrary to the ‘eternal truth’ school ot
thought. Recently the Four Colour Theorem was controversially
proven by an ingeniously programmed compuict; and while the
programmers obviously knew what they were doing, they did
not actually do the proof. Some mathematicians at the time did
not accept this as a valid proof — but this view 1s increasingly
rare, and we are currently seeing huge growth in ’experimenmi
maths’ that relies far more On inductive results from pumber-
crunching machines than on pure deduction. The ymportant
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Morris Klein

point is that if standards of mathematics are open to change then
the best mathematicians can do is to say that ‘it seems to work
for us, now’. In this respect perhaps there is not such a clear
difference between mathematics and the sciences. Mathematician
Raymond Wilder has claimed that ‘we do not possess, and probably
will never possess, any standard of proof that is independent of time, the
thing to be proved, or the person or school of thought using it’. This is
hotly contested by other mathematicians, but if it is the case then
the lofty dlaims of the ‘queen of the sciences’ seem rather over-
inflated, and are perhaps more about the desires of the
mathematicians than the reality. G. H. Hardy put it strongly:

There is, strictly, no such thing as mathematical proof. . . we can, in the
last analysis, do nothing buf point. . . proofs are what. .. I call gas —
rhetorical flourishes designed to affect psychology, pictures on the board in
the lecture, devices to stimulate the imagination of pupils.

Omnce we start thinking about the psychology of the subject then
we are alerted to the fact that to focus solely on the proof is to
miss the mathematician’s struggle, his adventure. Imre Lakatos
puts it well: ‘The whole story vanishes, the successive teniative
Sformulations of the theorem in the course of the proof-procedure are
doomed to oblivion while the end result is exalted into sacred infallibility.”

Of course being sceptical about the methodology we have
outlined in this chapter does not require that we resort to total
scepticism as to the truth of the resulfs. Most mathematicians
would claim that theorems are true or false independent of our
knowledge of them. Perhaps what evolves is not maths but our
knowledge of it — which is surprisingly close to what many
historians would say about their discipline — and perhaps what
Percy Bridgeman was thinking of when he said ‘It is the merest
truism that mathematics is a human invention.’

Whatever your view of these ideas, it is clear that, contrary to
the popular image of maths as right or wrong, black or white,
the subject is deeply controversial even to professionals.

— Where do we go from here?

In our quest for truth, we looked to mathematics to provide
certainty, and to a certain extent we have been successful, but
perhaps not as successtul as we might have hoped. We have
learned that mathematical reasoning based on assumed axioms can
generate certain, proven knowledge and, what is more, there even
seemns to be the possibility of an aesthetic element. Despite Gédel’s
theorems, this seems to be very promising, and we are immediately
led to ask if the mathematical method can be generalised to things
other than mathematical objects. If so, then perhaps we have made
a significant step in our quest for truth. Traditionally, the
application of mathematical principles (logic) to the world has been
called rationtalism, and it is the subject of the next chapter.

Where do we go from here?
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It is difficult for the non-specialist to get to grips with much of the ]
mathematical literature, but G. H. Hardy's A Mathernatician's Apology
{Cambridge University Press, 1940 repr. 1994) is a brilliant and
engaging description for the lay person. if you woulld like to get a first-
hand, totally non-algebraic experience of mathematical imagination,
then Edwin Abbott's classic Flatland (Penguin, 1952) and its more
readable descendent, Rudy Rucker's The Fourth Dimension (and how
to get there) {Rider and Company, 1988) are unsurpassed for
expanding conceptions of mathematics. Two very readable accounts
of humans at the centre of mathematics are David Blatner's The Joy
of Pi (Walker & Co., 1998) and Simon Singh's Fermat’s Enigma
(Walker & Co., 1997).

Getting slightly more technical, an outstanding description of what
mathematicians actually do can be found in Philip Davis and Reuben
Hersh's The Mathematical Experience (Houghton Miffiin, 2000}. The
creative and very human side of the notion of proof is brilliantly
explored in play form in Imre Lakatos' Proofs and Refutations
{Cambridge University Press, 1977). if you want to follow up the ideas
behind the Banach-Tarski theorem and similar issues then Morris
Kline's difficult but fabulous Mathematics: The Loss of Certainty
{Oxford University Press, 1982) is well worth the investment in time it
will take. A more accessible, rich, wide-ranging and funny account of
Godel's works (linking maths, music and art) can be found in Douglas
Hofstadter's Godel, Escher and Bach (Vintage, 1989) - which is more
an intellectual experience than a book. The same ground is also
covered in the excellent Ernest Nagel, James R, Newman and Douglas
R. Hofstadter's Gédel’s Proof {(New York University Press, 2001). For
two rather lighter but equally worthwhile books, try John Allen Paulo’s
Mathematics and Hurnour (University of Chicago Press, 1980}, which
is a short and funny book, or, as previously mentioned, David
Blatner's The Joy of Pi (Walker & Co., 1999).
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Resource file

T AINT WHAT YOU PROVE, IT'S THE
WAY THAT YOU PROVE IT

A play by Chris Binge.

Act |: Lesson |

Teacher: Good afterncon class. For
homework | aslked you to investigate
triangles and to try to find some of their
properties. Can anyone tell me what they
have discovered?

Alpha: Yes. | have found that the angles of
a triangle always add up to [80°

Teacher: Perhaps you could explain how you
came to this conclusion,

Alpha: Well, | drew a great many triangles
of varying shapes and sizes and found that
in nearly every case the angle sum was

£80°.

Beta: Just a moment, did | hear you say
‘nearly’ every case?

Alpha: Yes — | admit there were a few that
seemed to come to 18[° or even |79°.

Beta: So your result should say that “The
angles of a triangle nearly always add up to
180°)

Alpha: No, the evidence was so strong

that | can explain the few that didn’t by
inaccuracies of measurement.

Beta: What you are trying to say is that
you cling to your hypothesis despite
evidence to the contrary. These are clearly
counter-examples to your theory and it is
most unmathematical to dismiss them so
quickly.

Alpha: There is always experimental error
when measurement is involved — errors must
be expected, not considered as counter-
exarmples.

Beta: Teacher [ protest. Alpha is
using language that is more at home in a
science laboratory where vague concepts
such as ‘strength of evidence’ and
‘experimental error’ may be good
enough, but this is a maths class. YWe are
concerned with exactness and absolute
truth.

Alpha: Even if | remeasured my triangles
more accurately and got 180° every time, |
expect you are such a sceptic that you
would always say there may be a counter-
example | haven't yet found.

Beta: For once you are absolutely
correct. No amount of so called ‘evidence’
will convince me that your hypothesis,
however likely, must be true. You are using
an inductive argument which | cannot
accept. | will only believe that when | have
a vigorous deductive proof that it is the
case.

Teacher: | am sure we are all agreed that
such a proof would be desirable. Can
anybody provide one?

Gamma: Yes. | have a proof that will satisfy
Beta. May | demonstrate!

Teacher: Please do.

P

Gamma: You can see the triangle ABC. It
contains angles of size a, b, and c. | have
drawn a line passing through C which is
parallel to AB. Due to the well-known
properties of parallel lines, the angles at
point C are also a and b as | have indicated.
So now 3, b and c are on a straight line, so
a + b + ¢ = [80° So Alpha’s theorem is
proven since this process will worlc for all
triangles.

Teacher: Are there any questions about
Gamma's proof, or daes this satisfy even
Beta?

Delta: Just one small point. You have
asserted a ‘well-known’ result about
parallel lines. Could you just prove it for
me please.
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IT AINT WHAT vOu PROVE, IT'S THE WAY THAT YOU PROVETT

Gamma: OK ...is due to this property. Phi: Perhaps you could give us such a

Since (pointing) 2 +b=180°andb + d= definition.

180° then 2 = d- Gamama: Happily. A triangle is shape ;
nts with.three

formed by joining three poi
straight lines.

Phi: Now perhaps you will define a
straight line.

(wearily) A straight line is the
at you can draw becween

N
AR

Gamma:
shortest path th
two points.

1 will not go on to ask for a definition
ause | already have a counter-
example to your theorem, based entirely on
the definitions you have given. | have found a
triangle whose angles add up to 270°

Phi:
of points bec

Delta: Ah yes, but just one further
question, why do 2 + b = 1807

Gamma: Well clearlya + ¢ = 180° due to
the definition of |80° as the angle {pointing)
on a straight line. Similarly d+ b= 180
Now, that means 2 -+ b+ c + d = 360°.
Clearly a -+ b must be equal to ¢ + d
otherwise the lines would not be parallel
hencea + b = 180°.

Delta: | see. Are you sure there are not

other hidden assumptions in your proof?

Teacher: Please demonstrate.

Phi: (holds up footbally As you can see,
<his line gives the shoreest path between A
o BC and CA. Al angles

and B, the same f
are right angles, hence the total is 270°.

Gamma: FEryes (tentatively).

Delta: In which case may | suggesta

e. Firstly you have assumed that it is
always possible to draw a paralie! line
through a given point. Secondly, you have
assumed that it is possible to draw only
one such line, that is the one with the
angle properties you desire. Can you prove

these?

coupl

merely an argumen
proof we must start

you continuall
we will never

lines. What you are
proof that paralle

assuming it is —
Phi: To save alt

the angle property
triangle and define

Gamma:
a triangle i

properties.

Gamma: Youare going to question
everything aren't you? Loo
« from what we already

know to be trug to an

if | use the term ‘strai
point in asking me to prove that it is
stralght. The same is true with parallel

k, a proof is

ew result. In any
from assumptions. 1f

y question the assumptions
he able to reach a new truth.

ght line’ there is no

dolng is asking for 2

| lines are in fact paraliel.
All | am saying is, if we start with a straight
line, then we can deduce certain things. |

am nat, quite franldy, interested in arguing
whether or not it is really straight. 1 am

if it isn’t then we are talking

about a different problem.

this fuss, why not build
into the definition of 2
a triangle as a shape

whose angles add up to 180°

You are being facetious. We define
n terms of a few basic concepts,
and from these concepts we prove its

Delta: He's right, you cannot deny that

Gamma:

Delta: I'm sorry Gamma but you never

Gamma: The concept of a trian

Alpha: Even | have to disagree here. If1

this triangle fits your definitions, but it
clearly doesn’t follow the resutt of the
theorem.

This is ridiculous, that is not 2
triangle. A triangle is 2 shape drawn on a
flat plane, not on a curved surface.

put that in your definition. By your
definition there are three straight lines
joining three points hence this is 2 triangle,
hence 2 counter-example.

gle being 2

plane figure is implicit in the definition even

if it's not explicit.

were to go from Singapore to Tokyo to
Sydney and back to Singapore by the
shortest routes you would all call my path
triangular, yet as Phi has shown the angles

do not add up to 180°.
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Gamma: Clearly | must make the implicic
explicit. | will rephrase the theorem. The
angles of a triangle in a plane surface add
up to 180°

Teacher: Before we discuss this any further
may | draw your attention to the proof of
the theorem! We were happy with the
proof and surprised by the counter-
example. Should we nat examine the proof
to see where it breaks down? Then
perhaps we will see if there are any other
implicit assumptions that must be made

explicit.

Alpha: It is the parallel line bit that breaks
down.

Phi: 1 never liked that bit.

Alpha: If we follow the proof like before

then you can see that you get three right
angles on the line at C! But that's
impassible! So the proof doesn’t make
sense in this case — and you assumed that
it would.

Phi: Mmmm ... yes. And you know I'm
not even sure that the two lines are
parallel. Can you be certain that parallel
lines can be drawn on a plane? | suggest
that any two lines you draw will meet
somewhere, if we have a long enough
piece of paper. { challenge you to provide
an infinitely long piece of paper to prove
ime wrong.

Alpha: Any lines [ draw will be subject to
error in measurement and inaccuracy in
construction.

Beta: Oh don't start that again, we have
had enough science for one day. There is a
better way round the problem.

Alpha: Which is?

Beta: Which is to state clearly all
assumptions that we are going to call on,
and make our definitions subject to those
assumptions. | shall call the assumptions
‘axioms’ and from then we can deduce
‘theorems’.

Phi: But what if your assumptions are
false?

Beta: Truth or falsehood doesn’t enter
into it. We assume our assumptions,
obviously. That's why they are called ~
assumptions. Therefore anything that
follows from them is true in any world
where they hold. If you can’t find a world
where they hold then it doesn’t invalidate
the theorems or the argument used to
deduce them.

Phi: Let us hear your axioms.

Beta: Certainly.

[} There is one and only one straight line
between two points.

2) Any finite straight line can be produced
indefinitely.

3) All right angles are equal.

4} A circle can be drawn with any point as
centre to pass through a given point.

5} Through any point one and only one
line can be drawn parallel to a given
line.

Teacher: (an aside to audience) The axioms
were first suggested by the Greek
mathematician Euclid over 2000 years ago.
They were accepted as the basis for
geometry until the nineteenth century when
new systems of axioms were considered and
new geometries were explored, including
that of the sphere.

Gamma: So if we consider these axioms as
our starting point, they define what we
might call two-dimensional Euclidian space
and it is not necessary or meaningful to
question their truth since they are the
starting point.

Phi: Surely we should define the terms
that we use! We must be able to say what
we mean by point and line or the axioms
themselves are meaningless.

Delta: Ne, that would be too restrictive,
even if it were possible.

Teacher: | think you should explain that
statement — how are definitions restrictive?

Delta: Well the axioms that Beta gave us
were envisaged in a flat plane, and our
points and lines would be so defined.

Phi: Indeed, it is flat plane geometry we
are talking about.

Delta: But if we can find another syscem
which obeys the same again then all the
theorems which are true for the flat plane
are true for the other system.

Phi: [ am a bit worried about the
direction in which we seem to be moving.
We seem to have lost our grip on reality.

[IE5g
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Teacher: Perhaps you could elaborate on
your fears.

Phi: | shall try. When Alpha first
suggested the theorem about triangles, he
was, quite rightly, criticised for using what
one can only call a scientific method. |
mean no insult by this. He allowed
experimental evidence to guide his thinking
and his conclusion was not an accurate
deduction from his results. In maths we are
not concerned with measurement of angles
and the accuracies and inaccuracies that go
with it. Ve are concerned with the theory
of angles and triangles, with provable
deductions that have a universal truth.

Teacher: Surely that means you must
applaud the move towards an axiomatic
structure and clearly defined rules of
inference.

Phi: Only to a certain extent. [t seems
to me that we have gone too far, By
suggesting that our initial coneepts need
have no definiticns we have lost any
relevance that our results may have to a
real situation.

Teacher: Alpha, are you in broad agreement
with Phil

Alpha: | agree with him about going too far
and leaving reality behind. It seems to me
that maths has no value unless it informs us
more abour the world we live in and
Delta’s deduction from axioms and
undefined terms seems to be little more
than a game. | do however still defend che
experimental approach as a starting peint,
because unless | had found the hypothesis
by drawing then we would have had
nothing to prove and hence no work to do.
The correct procedure must be to find a
result by experiment and then, using agreed
definitions, we must prove the result true.
The important thing is that the definitions
characterise the abjects of discussion.

Delta: } am sorry, but | disagree. The
picturing of any reality is irrelevant, and to
look for such a picture is not the purpose
of mathemartics. The job of a mathematician

is to set up axiormatic systems and to
deduce from them theorems. Our
conceptions of the real are not fixed, they
vary from person to person and they
change, within each person from time to
time. One only has to look at the
confusion caused when Einstein asked
scientists to drop their Newtonian ideas of
physics or the continuing debate over
quantum theory and wave theory to see
how any supposed picture of reality is
inadequate. Whether ar not an axiomatic
system is of any value to scientists does
not affect its validity as a piece of
mathematics. We are not concerned with
perceptions of an external reality, we are
concerned with objects created by the
mind, and rules we use to govern these
objects. As such the objects cannot and
should not be defined in terms of the real
world, since the real world, or at least our
view of it, will change.

Beta: | agree with Delta. | also noticed
Alpha's attempt to slander axiomatic
systems by calling them games. He is
probably so upset at being called a scientist
that he wanted to throw a few insults of
his own. However, he has failed miserably
as | do not consider the word ‘game’ an
insult at all. The game of chess is a very
good analogy. In chess the pieces have
names and their rules for movement are
the axioms. A position is allowable only if it
can be reached by using the rules. But the
pieces are not defined in terms of anything
outside chess. We call a bishop a bishop
and a knight a knight burt their rules of
movement bear no relation to any bishops
or knights outside the game of chess (if
they did then the phrase ‘queen mates with
bishop on back row’ would have a
completely different meaning). No attempt
is made to use the game as a picture of
reality. The pieces are purely man-made
concepts and the game is a formal logical
structure. Mathemartics is a formal logical
structure derived from rules in the same
way — and the greatest game of all.

A What is the role of experiment in mathematics? How does this
differ from the role of experiment in science?

B Once mathematicians believe that they have found a result (or
theorem), what is the next step? How does this differ from

science?

oo

What is an axiom? Can an axiom be true or false?
In your own words, summarise Delta’s position on mathematics.

How does he differ from Alpha regarding the status of axioms?
E So are the results of mathematics true? What do we mean by

mathematicat truth?




‘The number system is like human life .. .’

i An exceact from Miss Smilla’s Feeling for fractions. Whole numbers plus fractions

| Snow by Peter Hpeg. produces the rational numbers. And human
consciousness doesn’t stop there. [t wants
to go beyond reason. [t adds an operation as
absurd as the extraction of roots. And
praduces ircational numbers.’

He warms the French bread in the oven
and fills the pepper mill.

‘It’s a form of madness. Because the
irrational numbers are infinite. They can't
be written down. They force human
consciousness out beyond the limits. And
by adding the irrational numbers to the
rational numbers you get the real numbers.’

've stepped out into the middle of the
room to have more space. [t’s rare that you
have a chance to explain yourself to a
fellow human being. Usually you have to
fight for the floor. And this is important to
me.

‘It doesn’t stop. It never stops. Because
now, on the spot, we expand the real
numbers with imaginary square roots of
nepative numbess. These are numbers we
can't picture, pictures that normal human
consciousness cannot comprehend. And
when we add the imaginary system to the
real numbers, we have the complex number
system. The first number system in which
it'’s possible to explain satisfactorily rhe
crystal formation of ice. It's like a vast,
open landscape. The horizons. You head
towards them and they keep receding. That
is Greenland, and that's what [ can’t be
without. That’s why I don't want to be
locked up.'

[ wind up standing in front of him.

‘Smilla,” he says, ‘can I kiss you?

‘Pm afraid of being locked up,’ I say.

He puts the crabs in the pot. He fets
them boil for no more than five minutes.

In a way I'm relieved that he doesn’c say
anything, doesn’t yell at me. He's the only
other person who knows how much we
know. It seems necessary to explain my
claustrophobia to him.

‘Do you know what the foundation of
mathematics is? I ask. "The foundation of
mathematics is numbers. If anyone asked
me what makes me truly happy, [ would
say: numbers. Snow and ice numbers. And
do you know why?'

He splits the claws with a nutcracker and
pulls out the meat with curved tweezers.

‘Because the number system is like
human life. First you have the natural
numbers. The ones that are whole and
positive. The numbers of a small child. But
human consciousness expands. The child
discovers a sense of longing, and do you
know what the mathematical expression is
for longing?

He adds cream and several drops of
orange juice to the soup.

‘The negative numbers. The
formalisation of the feeling that you are
missing something. And human
consciousness expands and grows even
more, and the child discovers the in-
between spaces. Between stones, between
pieces of moss on the stone, between
people. And between numbers. And do you
J 1 know what that leads ro? It leads to

A Smilla says, ‘the foundation of mathematics is numbers'. Is this
really the foundation? Are there any other contenders for the
foundation of mathematics?

B Smilla describes some operations as ‘absurd’, and some
numbers as ‘madness’. What are her grounds for doing sa? Are

these reasonable grounds?

’S. C Why does Smilla liken maths to human consciousness? Does this

analogy tell you anything? Do any of your experiences suggest

anything similar? 73 |
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